

REEXAMINATION OF THE STRUCTURE OF VERAMARINE

Ko KANEKO^a, Mikako TANAKA^a, Taeko KURIBAYASHI^a, Hiroshi MITSUHASHI^a
and Jozef TOMKO^b

^a Faculty of Pharmaceutical Sciences,
Kokkaido University, Sapporo 060, Japan, and

^b Faculty of Pharmacy,
Comenius University, 832 32 Bratislava, Czechoslovakia

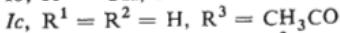
Received March 11st, 1983

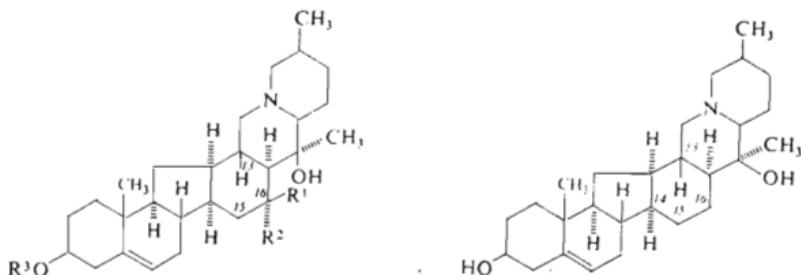
The previously proposed α -orientation for the $C_{(16)}$ -hydroxyl group of the alkaloid veramarine (*Ia*) has been revised; the 1H and ^{13}C NMR data of *Ia* and the base-catalyzed solvolysis of its O-diacetate *Id* evidenced veramarine to be (25*S*)-cev-5-enine-3 β ,16 β ,20 β -triol (*Ib*).

The amorphous base veramarine (*Ia*), isolated from the rhizome of *Veratrum album* subsp. *Lobelianum* SUESSENGUTH^{1,2}, is an alkamine of the cevanine type poor in the content of hydroxyl groups. Its structure was adduced from the physicochemical data of the base and its derivatives^{2,3}. Another source of this alkaloid was found to be the rhizome of irradiated *V. grandiflorum* (MAX.) LOESSEN, from which veramarine (*Ib*) was isolated in a crystalline form. The identity of both alkaloids was confirmed by a direct comparison of its 3-acetate with that of the specimen.

To verify the structure *Ib* the NMR spectral data of the base were reexamined and the base-catalyzed solvolysis of the O-diacetate *Id* was investigated. The position of the multiplet (centered at δ 4.38, 8 Hz in the half-height width) of the hydrogen at $C_{(16)}$, which bears the hydroxyl group fits that for α -equatorial arrangement; on acetylation the position was downfield shifted to δ 5.35. Consequently, the $C_{(16)}$ hydroxyl have to be β -axially oriented.

Another proof for the $C_{(16)}$ β -hydroxyl orientation came from the ^{13}C NMR spectrum: comparison of the spectral data of *Ib* with those of veraflorizine (*II*), recently isolated from the same source as *Ib* (ref.^{4,5}), showed a close pattern (Table I). An introduction of the β -axial hydroxyl group at $C_{(16)}$ caused significant shifts of $C_{(13)}$, $C_{(15)}$ and $C_{(16)}$ resonances in *Ib*. The observed $\Delta\delta$ values backed the configuration of the β -axial hydroxyl group at $C_{(16)}$: the upfield shift ($\Delta = -5$ ppm) of the $C_{(13)}$ signal because of the characteristic γ -effect, a downfield $C_{(15)}$ signal shift ($\Delta = 5$ ppm) because of the β -effect and a downfield $C_{(16)}$ signal shift ($\Delta = -45.3$ ppm) because of the α -effect.




To support the configuration assignment at $C_{(16)}$ in *Ib*, compound *Id* was sub-

jected to a base-catalyzed solvolysis (ref.^{6,7}). The methanolic solution of *Id*, allowed to stand at room temperature for 24 h, afforded *Ic* in a 68% yield. The reaction in trimethylamine buffer was significantly accelerated. The reactivity of the C₍₁₆₎ acetate in *Id* during the methanolysis entitled us to postulate a participation of the hydroxyl group at C₍₂₀₎ bearing a *cis*-1,3-diaxial relation to the ester group (Scheme 1).

SCHEME 1

The X-ray analysis of veramarine monoacetate *Ic* confirmed the suggested structure as (25*S*)-cev-5-enine-3 β ,16 β -20 β -triol (ring junctions B/C *trans*, C/D *cis*, D/E *trans*, and E/F *trans*). The configuration at other chiral centers was settled to be C₍₃₎ hydroxyl β -equatorial, C₍₁₀₎ methyl β -axial, C₍₂₀₎ hydroxyl β -axial, C₍₂₅₎ methyl β -axial^{8,9}. Thus, the previously proposed structure for veramarine was confirmed excepting the configuration of the C₍₁₆₎ hydroxyl group which was revised for β -axial orientation.

Since veramarine is a C₍₁₆₎ oxygenated derivative of veraflorizine (*II*) it seems plausible to propose that *Ib* represents one of the intermediates in the postulated pathway of cevanine alkaloid biogenesis⁴.

EXPERIMENTAL

Melting points were taken with a melting-point apparatus (Leitz, Wetzlar, FRG), the mass spectrum was recorded on a JMS D-300 Jeol, (Japan) spectrometer with a JMA 2000 Jeol, (Japan) Mass data analysis system. The ¹H and ¹³C NMR spectra were measured with a JNM FX-100 Jeol spectrometer in deuteriochloroform (ppm downfield from tetramethylsilane $\delta = 0$), the IR spectrum of chloroform solution with a Hitachi grating infrared spectrometer, model 215, and optical rotation of chloroform solution with a Jasco DIP-4 (Japan) digital polarimeter.

Plant material, extraction and purification. Budding *V. grandiflorum* (MAX.) LOESSEN was cultivated in a 4-fold dilution of Hoagland solution in the dark for 10 days. The resulting etiolated plants were irradiated by a red fluorescent light (Mitsubishi FLR-40P Japan), maximum energy at 660 nm from the top of the plants for 2 days. Dilute ammonia was added to the dried and powdered rhizome, and the mixture was extracted with chloroform-ethanol. The extract (550 g), hydrolyzed with a 1M-HCl in methanol for 6 h afforded the crude mixture of alkaloids (116.1 g), which was separated into secondary and tertiary base fractions according to the Jacobs method¹⁰. The tertiary base fraction (68.1 g) was separated by column chromatography on alumina (Merck, 30-fold excess, standard *III*) by consecutive elution with benzene, 10% ether in benzene, chloro-

TABLE I
¹³C NMR Assignments for veramarine (*Ib*) and veraflorizine (*II*)

Carbon ^a	<i>Ib</i>	<i>II</i>	Carbon ^a	<i>Ib</i>	<i>II</i>
1	38.2	38.2	15	30.8	25.2
2	31.5 ¹	31.5	16	66.1	20.8
3	71.9	71.9	17	50.4	49.0
4	42.0	41.9	18	61.9 ³	61.9 ²
5	141.7	142.0	19	19.1	19.0
6	122.3	122.3	20	73.2	71.1
7	31.5 ¹	31.3	21	19.9	20.4
8	38.7	38.7	22	70.0	70.4
9	5.46	54.3	23	19.2	18.7
10	37.0	37.0	24	28.8 ¹	29.3 ¹
11	29.2 ¹	29.5 ¹	25	27.6	27.8
12	41.5	41.7	26	17.3	17.4
13	32.7	37.6	27	62.2 ³	62.7 ²
14	43.7	44.7			

^a Resonances with the same superscripts^{1,2,3} may be interchanged.

form and 10% methanol in chloroform to give fractions containing solanidine, verazine, rubijervine, and veratramine. Each fraction was further purified by thin-layer chromatography affording shinonomenine (49 mg), veraflorizine (5.7 mg) and veramarine (*Ib*, 250 mg).

Veramarine, m.p. 119–122°C (acetone–water), $[\alpha]_D$ –112.7° (c 0.22, chloroform). For $C_{27}\cdot H_{43}\cdot NO_3$ calculated: 429.3241, found: 429.3228 M^+ , further peaks in the mass spectrum, m/z : 112–1130 ($C_7H_{14}N$, base peak), and 111. IR spectrum, cm^{-1} : 3 600, 3 420, 2 775. 1H NMR spectrum: 1.04 (s, 3 H, 19-H), 1.10 (d, 3 H, J = 7 Hz, 27-H), 1.19 (s, 3 H, 21-H), 3.52 (m, 1 H, 3zH), 4.36 (m, 1 H, $W_{0.5}$ = 9 Hz, 16z-H), and 5.38 (m, 1 H, 6-H).

Methanolysis of veramarine: A solution of *Id* 20.5 mg in methanol (3 ml) and water (0.5 ml), left to stand at room temperature for 24 h was extracted with chloroform after being made alkaline and the chloroform extract was purified by thin-layer chromatography on silica gel in cyclohexane–ethyl acetate–methanol–diethylamine (2 : 2 : 1 : 0.1). Yield 12.7 mg of *Ic*, m.p. 253 to 255°C and 4.4 mg of *Id*. The melting point of *Ic* was not depressed on admixture with the specimen. A solution of *Id* 11 mg in chloroform (0.5 ml), triethylamine (0.5 M, 3 ml), acetic acid (0.5 M, 0.5 ml), and methanol (90%, 0.5 ml) was allowed to stand at room temperature. The rate of methanolysis was monitored by thin-layer chromatography every hour (solvent system cyclohexane–ethyl acetate–methanol 2 : 2 : 1); R_F values: *Ib* 0.40, *Ic* 0.60, *Id* 0.75. The reaction equilibrium was reached after 10 to 14 h the ratio *Ic* : *Id* being 7 : 3.

Veramarine 3-monoacetate (Ic): m.p. 253–255°C. IR spectrum, cm^{-1} : 3 450, 2 775, 1 720, 1 260. 1H NMR spectrum: 1.04 (s, 3 H, 19-H), 1.08 (d, 3 H, J = 7 Hz, 27-H), 1.18 (s, 3 H, 21-H), 2.02 (s, 3 H, —OCOCH₃), 4.34 (m, 1 H, $W_{0.5}$ = 8 Hz, 16z-H), 4.60 (m, 1 H, 3z-H), and 5.40 (m, 1 H, 6-H). The melting point of *Ic* was not depressed on admixture with authentic veramarine 3-monoacetate².

Veramarine O-diacetate (Id): m.p. 205–210°C. IR spectrum, cm^{-1} : 3 300, 2 775, 1 720, 1 250. 1H NMR spectrum: 1.03 (s, 3 H, 19-H), 1.07 (d, 3 H, J = 7 Hz, 27-H), 1.10 (s, 3 H, 21-H), 1.93 (s, 3 H, —OCOCH₃), 2.00 (s, —OCOCH₃), 4.52 (m, 1 H, 3z-H), 5.36 (m, 1 H, 6-H), and 5.50 (m, 1 H, $W_{0.5}$ = 8 Hz, 16z-H).

REFERENCES

1. Tomko J., Vassová A.: *Pharmazie* 20, 385 (1965).
2. Tomko J., Votický Z., Budzikiewicz H., Durham L. J.: *This Journal* 30, 3320 (1965).
3. Ito S., Ogino T., Tomko J.: *This Journal* 33, 4429 (1968).
4. Kaneko K., Kawamura N., Kurabayashi T., Tanaka M., Mitsuhashi H., Koyama H.: *Tetrahedron Lett.* 1978, 4801.
5. Kaneko K., Tanaka M., Haruku K., Naruse N., Mitsuhashi H.: *Tetrahedron Lett.* 1979, 3737.
6. Kupchan S. M., Eriksen S. P., Friedman M.: *J. Amer. Chem. Soc.* 68, 343 (1966).
7. Kupchan S. M., Eriksen S. P., Liang Y. T. S.: *J. Amer. Chem. Soc.* 88, 347 (1966).
8. Pavelčík F., Tomko J.: *Acta Crystallogr., Sect. B*, 35, 1790 (1979).
9. Pavelčík F., Tomko J.: *Tetrahedron Lett.* 1979, 887.
10. Jacobs W. A., Craig L. C.: *J. Biol. Chem.* 160, 555 (1945).

Translated by Z. Votický.